AMAI08818

- “This documwont has been ap 81 o |
(: zoxpuzxcs‘em:.ﬂummmu I 12 93 0§77

AD

)
l
i
i
i
1
i

TECHNICAL REPORT

T L

A REMOTE TERMINAL EMULATOR

FOR PRIME COMPUTERS /7N 3.'(1
{ V7)) |
By

Daniei H. Forsyth, Jr.

Prepared for

OFFICE OF NAVAL RESEARCH
800 N. QUINCY STREET
ARLINGTON, VIRGINIA 22217

Under

Contract No. N00014—79-—-C—-0873
GIT Project No. G36—-643

47(1 OO 4{,57[

August 1981

GEORGIA INSTITUTE OF TECHNOLOGY

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
SCHOOL OF INFORMAT!ON AND COMPUTER SCIENCE
ATLANTA, GEORGIA 30332

distribution is unlimdted, o

THE RESEARCH PROGRAM IN
FULLY DISTRIBUTED PROCESSING &

A REMOTE TERMINAL EMULATOR FOR PRIME COMPUTERS

TECHNICAL REPORT
GYT-ILS-81/12

NApcesslon For

BTLS omaer g T
N AR a
Dic ¢ ‘2$

e AT
Jl.\ Y

paniel H. Forsyth, Jr.

Boo .

August, 1981 Availo:

D

Disteir:

Office of Naval Research
800 N. Quincy Street
Arlington, Virginia 22217

Contract No. NOOO14-79-C-0873
GIT Project No. G36-H643

The Georgia Tech Research Program in
Fully Distributed Processing Systems
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

P

i
1

etk ke o aeten | ms ak a1

i

a5 D At Mt b s bl .l e

et AR oA K S L — el

¢

e e T
o e
o . it i o . b o, 37T A K ‘
. ¢ - ?'nwr- e 4%“‘6%
- . . L e, P

o
!
b
*
! f
!
R
i
b THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF
i.‘ THE AUTHORS AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL. DEPARTMENT OF THE
» NAVY POSITION, POLIZCY, OR DECISION, UNLESS SO DESIGNATED BY OTHER]

DOCUMENTATION.

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

REPORT DOCUMENTAT!ON PAGE B“%%‘épégﬁgﬁgggg":og "
1. REPORT NUMBER 2.GOVT ACCESSION NO 3, RECIPIENT'S CATALOG NUMBER
s] q
GIT-1CS-81/12 A -AAGK K) "4
4. TITLE (and Subtiile) 8. TYPE OF REPORY & PERIOD COVERED

Technical Report

A Remote Terminal Emulator August 1981

ry . n
For PRIME Computers E;;:%gg:gf;;zni;’ T NumBER

7. AUTHOR(:) 8. CONTRACT OR GRANT NUMBER(s)

] Daniel H. Forsyth, Jr. NO0014~79-C-0873

i

;. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT, PROJECT, TASK

3 AREA & WORK UNIT NUMBERS

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

i ot o R

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research August 1981
800 N. Quincy Street 13. NUMBER OF PAGES
Arlington, Virginia 22217 ac 44

—_—— s
T4, MONITORING AGENCY NAME & ADDRESS(i{ dilterent from Controlling Oftice) 1S, SECURITY CLASS. (of thia report)

fattiiie it S 4

i e e A =

Unclassified
iSa. DECL ASSIFICATION/DOWNGRADING
CHEDULE

i 16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution limited.

17. DISTRIBUTION STATEMENT (of the absatract entered In Block 20, iIf different from Report)

10. SUPPLEMEMNTARY NOTES
The view, opinions and/or findings contained in this report are those of the

author and should not be construed as an official Department of the Navy
position, policy, or decision unless so designated by other documentation.

19 KEY WORDS (Continue on reverse side if necessary and identify by block number)

Remote terminal emulator
C Performance evaluation for time-shared systems
- Benchmarking

2 ABSTRACT (Continue on reverse side if necessary and identity by block number)
remote terminal emulator is a device that emulates sources of on-line input

to a computer system, and is one of the most reliable tools for measuring the
performance of time-shared computer systems. The remote terminal emulator
described in this report provides simultaneous emulation for a number of
communication lines as well as the software necessary for the preparation of
scripts (a sequence of actions to be performed by the emulator) the setup and -
control of test sessions, and the analysis of test results..

DD , j(::'f’a]473 EDITION OF | NOV 85 1S OBSOLETE lI] 1f1 : d

SECURITY CL ASSlF!CAflON OF THIS PAGE /W¥hen Data Entered)

i
z‘,
|
1
4

Y W e T T TR e

——— s e B

SECURITY CLASSIFICATION OF THIS PAGE(Whn Data Entered)
e

—Unclassgified

SECURITY CLASSITICATION OF THIS PAGE(When Data Entered)

M

kil i

¢ cron o b mmmnt oot

Jada

lditidd ahliad

e e Ty

LR M S T R e ms geusmmameyme v ..;..@,,sz‘w Caaiad o

.1 - - c—— C—— =

114

Sumnary

A remote terminal emulator (RTE) is a device that emulates sources

of on-line input to a computer system., An RTE is one of the most :2:liable
tools for measuring the performance of time-shared camputer systems., 1In
order to emulate a wide variety of interactive input devices, an RTE is
controlled by programs known as scripts. A script describes a sequance of
actions to be performed by the RTE. Such a sequence might include messages
to be transmitted to the system under test along with their timing,
responses possible from the system under test, and actions to be taken
' after a specific response is received. As well as performing actions as
‘ specified by the scripts, the RTE records all the communication activity
for later analysis.
- The remote terminal emulator described herein runs on a Prime 400 or
; |) larger camputer system under the standard vendor-supplied operating system,
:' It provides simultaneous emulation for a mumber of communications lines as
well as the software necessary for the preparation of scripts, the setup
and control of test sessions, and the analysis of test results.

T TR T

TR TR CT VR ez

Georgia Institute of Technology Remote Terminal Emulator

LU : - .
FL~ B —

TABLE OF CONTENTS

Crmpter 1 Introduction . L] L] [] . [] * [] . L L L L] L L] L] L L] L] L] . L] L] 1

1.1 Purposes of Performance Measurement . .

1.2 Techniques for Performance Measurement . .
1 L] 3 uncmrk TeChniques L] L . L L] . L] L 3 L] L L] L] L * L] L L] L] L] L) [] [}
1.“ Omr "wk L) [] L . L] L] L L] L L] L] L] L] L] L] L e L L] L L] L] L [] L] L) L]

Chapter 2 me m ProJQct [] [L] L] L] L] L] - L] L] L] L] L L L] L] e L] L[] * *] L]
2.1 0bjectives ¢ s ¢ ¢« &

2 2 De318n Misions [] [] [] * L] [] L] L] L] [] L] [] L] . [] L) [] L] L] L] L] * L] [] 10

2.3 Implementation Sketch « . + ¢ ¢ ¢ o ¢ o ¢ o o 0 s o s ¢ o s oo 13
231meScriptPreprocessor............. c 0o 15 ;
2.3.2The Script Interpreter . .« « ¢« ¢« ¢« ¢« ¢« o« ¢ ¢ o o ¢ s s s+ o 16 :
2.3.3The Sessinon ANBLYZEr . « « « « s o s o ¢ ¢ s o o o o o o o o 1T i

Chapter 3 ConcluSsion .« « « o« o« o ¢ ¢« o ¢ o o s s o s s s s s 00 000 18

3.1 Evaluatim L] L] L] L] L] L] L] L] L] L] L] L] L] L] * L] L] - [] L] L] [] L] L] L] []] 18
3.2 Recommendations « « « ¢« ¢ ¢ ¢ ¢ o o e o 0 2 0 0 s s s e s 23

Aml mmen ts . L L L] L] L] L) L] L] L L L] L] L . [) L] L[] L] . L] L . . . L] 5 J

Bibliography . L] . L . L * L] L] L] L] L4 . L] L L] . L] . - - L L L - L] L] * * - %

Georgia Institute of Technology Remote Terminal Emulator

vi
LIST OF TABLES
Table 1 Operation of the RTE . o « ¢ o ¢ o o o o ¢ o ¢ ¢ ¢ ¢ o s o o s 1 :
i
Table 2 Requirements for an RTE . . « v v v ¢ ¢ ¢ ¢ ¢ ¢ s s o o o s s o 18 i
Table 3 Character Transmission Events . « ¢« ¢« ¢« o« o ¢ ¢ ¢ o o s e ¢« o « 19 ,
i
b
)
:] 1

Ceorgla Institute of Technology Remnte Terminal Emulator

A Ll o
L 4
e g -~

LIST OF ILLUSTRATIONS

Figure 1 Purposes of Performance Measurement

Figure 2 Techniques for Performance Measurement

Figure 3 Remote Terminal Bmulation

Figure 4 Structure of the RTE Implementation

Georgia Institute of Technology

vii

Remote Terminal Emulator

e e T o ———————————

T TP T Z T

. it i

TR T T T

Chapter 1 Introduction Page 1

CHAPTER 1
Introdustion

The performance, or operational behavior, of a software system
is of prime importance to everyone concerned with the system -
designers, implementors, and users. Obtaining and evaluating
data on a system's performance must be an integral part of the
process of creating systems [Freeman 75].

One of the goals of the on-going research in the School of Informa-
tion and Computer Science is the creation of a testbed facility for the
implementation and evaluation of fully distributed processing systems
(FDPS). An essential feature of the testbed is the requirement to
empirically evaluate the performance of fully distributed processing
systems during their implementation. Providing a facility that measures
these systems by generating an external load and measuring external
response is the topic of this thesis.

1.1 Burposes of Perfanaoce Measurement

There are three general purposes of performance evaluation:
selection evaluation, performance projection, and performance monitoring
[Lucas 71]. These are shown in Figure 1.

o

{L Performance Measurement

/ | \
/ | \
/ | \
/] \
/ | \
' \'d y
! | ! | | !
| Selection | | Performance | | Performance |
}LEvaluation { i Projection { | Monitoring _{
}

Figure 1 —~ Purposes of Performance Measurement

Selection evaluation involves the comparison of existing systems, The most
frequent application of selection evaluation techniques is for comparison
of computer systems to determine which system performs a given function
most efficiently or whether a given system configuration can support a

Georgia Institute of Technology Renote Terminal Emulator

e vl Sttt st e,

Pago 2 Introduction Chapter 1

particular application. Selection evaluation is also applicable when
measuring the impact of different hardware cr software on an existing
system. For example, selection evaluation is useful in determining whether
the addition of a load balancing algoritim improves interactive response
time. Similarly, selection evaluation can answer the question "Did the
last change to the operating system improve performance?" In all cases,
the detining feature of a selection evaluation is that the systems to be
compared must exist and must be available for testing. i

Performance projention techniques are often applicable during the
design of new hardware and software systems. These techniques attempt to
predict the performance of new hardware and software designs prior to 1
implementation. They can also be used to predict the performance of a
system under a new workload or with a different hardware configuration.
Performance projection techniques can often be applied to the same problems
as selection evaiuation techniques. However, the distinguishing feature is
i that it be not practical to actually test the systems under consideration:
it may be too expensive to test the actual configuration, the configuration
may not be available, or the system may not exist at all.

Performance monitoring techniques are applied 1in an attempt to
understand the behavior of existing systems towards the goals of improving
efficiency and service to users., It usually involves observing an existing
system under normal operating conditions. Quantities measured with per- j
formance monitoring techniques are usually very dependent on the system]
measured (e. g., number of page faults, number of times the dispatcher is
entered, etc.). For this reason, performance monitoring techniques are !
usually applicable only fcr the comparison of similarly structured existing ‘
systems. For instance, it is difficult to compare the performance of
systems that use different disk block sizes by comparing the number of
. physicaL disk reads and writes.

d 3 In the ICS FDPS testbed faciiity, performance evaluation will be
necessary for all three purposes. One need is for a performance

SR E RV

NP

measurenent tool is in the area of selection evaluation. It is necessary
to test prototype systems and compare the results with the results predic-
ted by performance projection techniques, as well as with results obvained
by testing other systems. The tool must be able to empirically measure the -

Georgia Institute of Technology Remote Terminal Emulator

Chapter 1 Introduction Page 3

performance of existing software and hardware configurations, and must be
able to provide comparable measurements on similar configurations,

1.2 lachnigues for Parformance Measucsment

A number of different performance measurement techniques can be
applied for the purposes mentioned in the previous section. Figure 2 shows
these techniques.

Performance Measurement Techniques

T
b —

| !
\ / \ J
! ! ! |
| Modeling | | Measurement |
| Techniques | | Techniques |
1 i 1. .
! |
-—-—L—-——- J
| ! | | ! | |
| ! ! | ! | |
\/ ! \/ | \J ! \ J
| o ! P P 1 |
| Simulation | | | Cyele | | | Kernal | | | Bench- |
| P | Times | | | Programs | | | marking |
! | 4. 1 1l 1 14 J
i | '
\ J \ / \ /
| P I !
| Analytical | | Instruction | | Monitoring |
| Techniques | i Mixes J { Techniques |

Figure 2 -— Techniques for Performance Measurement

Most of these techniques can be applied for all purposes of performance
meuasurement, but some proviie only marginally useful results, Since an
FDPS testbed performance measurement tool is needed for the purpose of
selection evaluation, the following discussion of performance measurement
techniques is confined to those applicable to selection evaluation.

There are two classes of performance evaluation techniques that can
be used for selection evaluation: modeling techniques and measurement
techniques [Ferrari T8]. Modeling techniques involve building a

Georgia Institute of Technology Remote Terminal Emulatcr

TR

T g

e e ——r——

Page 4 Introduction Chapter 1

representation of the system to be evaluated and then testing that model,
{lthough most useful in performance projection, modeling techniques can
also be used for selection evaluation. A sigrnificant problem with all

modering techniques 1is determining how well the model reflects the system
it models.

Validation [of a model]l is of“en diff{icult, a. somziimes
impoussinle., It may be based con previous thzoretical or simula-
tion results, but if the modeled system exists, the ultimate
foundations of a validation model must be ompirical. . . .

Thus, 1in a sense, measurement. is the most important evaluation

technique, since it is needed also by the other techniques.
[Ferrari 78]

Measurement techniques involve actually measuring the behavior of an
existing system and thus are applicable only when the performance of a
system can actually be determined. Several of the measurement techniques
(instruction timings, instruction mixes, and kernel programs) merely make
comparisons of hardware parameters such as memory cycle time, addition
times, etc. These techniques are generally useful only as a supplement to
more powerful techniques when used to compare hardware configurations and
are inacdequate when used to compare software systems [Lucas 71].

Hardware and software monitoring techniques, which usually involve
the recording of such things as the number of page faults, number of cache
misses, etc., provide a great deal of information about the performances of
a particular system. But since the parameters that can be measured are
usually very specific to a particular implementation, comparisons between
systems with different internal structures are usually difficult to
interpret.

The remaining measurement techniques, generally called benchmark
techniques [Svobodova 76], involve actually running a system using a set of
real or carefully contrived input and measuring the response of the system.
Since the benchmark techniques treat the system under test as a "black
box", wmeasuring only stimuli and responses, they are immune to many of the
problems of other measurement techniques. In gcucral, the only significant
difficulties of benchmark techniques are in the determination of the input
to the system under test and in the analysis of the output of the system
under test.

Georgia Institute of Technology Remote Terminal Emulator

JE T T e

Chapter 1 Introduction Page 5

To support the FDPS testbed, the performance measurement must be
capable of consistently applying arbitrary benchmarks to the the machines
that are or will be a part of the testbed. I{ must also allow arbitrary
analysis of the responses of the testbed equipment. This decision permits
a generally useful tool for the testbed, while not encumvering oir presup-
posing knowlewge of the research issues of either the FDPS project or of
benchmark techniques.

1.3 Benchmark Iechniques

Performing a benchmark on z system first involves devising a
workload to apply to the system under test. Svobodova defines the workload
of a system as "the total of resource demands generated by the user com-
munity" [Svobodova 76]. Seen from the benchmark point of view, devising a
workload is simply defining the set of inputs to be presented to the system
under test., It is not a function of a remote terminal emulator to devise
the workload to be used as the benchmark. The user must be responsible for
devising a representative workload based on the system to be tested — the
performance measurement tool need only be able to apply an arbitrary work-
load.

Once a set of benchmark jobs have been chosen and tested, the work-
load can be applied to a particular system configuration., A batch system
may be tested by simply placing each job deck in the card reader at a
preappointed time, and noting the time needed for the completion of all of
the jobs. Testing a slightly different configuration presents no
additional problems. The workload in this case is repeatable; it can be
run several times on one system and barring malfunctions, one can expect
similar results,

Testing of an interactive system is much more difficult. Since an
interactive workload is generated by users entering data at terminals, it
is very difficult to generate a repeatable workload without additional com-
puter assistance. In general it is wot possible to get a dozen or more
people to type in commands in exactly the same order and "think" for exac-
tly the same time for many consecutive test sessions. To obtain comparable
results from several test sessions, it is necessary to have a means to
emulates the actions of the interactive users and to repeat the same work-

Georgia Institute of Technology Remote Terminal Emulator

Ty Y T Ty pr— r

el il

Page 6 Introduction Chapter 1

load many times without tiring.

A Remote Terminal Emulator (hereafter referred to as an RTE) is just
such a device. Its primary function is to emulate the load placed on a
systr.a by remote sources attached through communicaticn: 7inks, such as
terminals, sensors, and process controllers., RTEs are quite useful in per-
formance measurement and evaluation, as well as for emulating devices in
multi-dropped line protocols, monitoring communication line activity, and
providing a host system for the testing of communications line protocols.

When used for performance evaluation, the RTE must produce a
predefined workload while recording data about the responses of the cystem
under test. To be capable of generating an interactive workload as well as
a batch workload, an RTE must be able to accurately emulate people typing
at interactive termminals. An interactive cession, as opposed to a batch
Jjob, has three additional characteristics: (1) future input may be
determined by current output, (2) there may be pauses before input messages
corresponding to user "think time", and (3) there are pauses between input
characters corresponding to user typing rate [Svobodova T761].

For the needs of the FDPS testbed, a remote terminal emulator is
best choice for the performance measurement tool. As a minimum, the RTE
must be able to generate interactive workloads to drive the existing hard-
ware and software in the testbed. Preferably the RTE should be a general
toocl for performing benchmarks; it should be able to emulate any interac-
tive device, either camputer system or temminal, that hardware
considerations allow it to replace.

1.4 Qther Mork

Most major computer vendors support RTEs for measuring the per-
formance of their systems. RIEs are invaluable for helping to tune com-
puter systems to squeeze the most performance per dollar, as well as for
helping to convince prospective customers that a particular configuration
will indeed do what the specifications says it will. Other groups, such as
the U. S. Air Force and Tymshare also use RTEs for assistance in tuning and
seiecting computer systems [Watkins 77]. Most existing RTEs run either on
inexpensive minicomputers (Air Force/MITRE DVM) or on the same family of
systems they are built to test (Burroughs System/DCEM, IBM DB/DC Driver,

Georgia Institute of Technology Remote Terminal Emulator

e P A ke bt L e bl

&
K.
4

w
5 R e e

Chapter 1 Introduction Page 7

Univac CS1100). Some performance measurement tools run in a front end or
peripheral processor attached to the system to be tested (Honeywell Datus,
CDC BARTER) [Watkins 77]. These tools have functions similar to RTEs, but
are not usuaily classified as such:
There are implementations of workload drivers which reside
pither within the SUT [system under test] or in its com-
munications front-end. . . . SUT resource dependency excludes
these specific implementations trom the classification RTE. In
the interests of control and repeatability of testing, and of
creating as near a duplication as possible of a specified work-
load and its effect on the SUT, the driver must be external to

anr]1 independent. of the SUT for the device to be an RTE [Wathk.ns
77 [)

Most existing remote terminal emulators have a structure similar to
that shown in Figure 3. Scripts, either in original or campiled form are
accepted by the emulator and used tc generate messages to be sent to the
system under test. The responses of the system under test (either the
entire response or the critical portions such as the first and last charac-
ters) are either time-stamped and logged in the session log filcs or are
immediately reduced into statistics that are being collected. Depending on
the implementation, the RTE may or may not examine responses from the
system under test to modify its future actions. At the end of the test
session, the desired measurements can be obtained from the RTE or by
analyzing the session log files,

Georgia Institute of Technology Remote Terminal Emulator

PP T

it et e 25 e i a1 M 5 e Sl

L e TN s iR e A T
=

Page 8 Introduction Chapter 1
] | |]
| | lew—=>| Remote Terminal |
! E L Emulator |
| Scripts |ew|amlee——>| !
|] A A
d A / |
b / P 1
/ e
[m—/] !
/ | Session !
] / | Log Flles |
, /] |
] J N
£ ‘ 3
t ' | System Under |
- { Test |
b z |
1. A
: ‘ Figure 3 ~- Remote Terminal Emulation

Georgia Institute of Technology

Remote Terminal Emulator

e anneens A Womnltn, ARl e R e

RTIoN

R o et i 2af oot S L el e S

Chapter 2 The RTE Project Page 9
CHAPTER 2
The RIE Project
2.1 Qhijectives

From the preceding discussion of the motivations for the RTE
project, two design objectives arise: the RTE should produce realistic
interactive workloads and the RTE should remain an effective tool for
several years. These objectives, although succinct, are not absolute
requirements., It is necessary, as in most software projects, to compromise
same of the objectives for practical reasons. For instance, extremely
accurate time interval measurement cannot be provided without hardware
modification. Requiring special hardwire reduces the long-term usefuless
of the RTE, but increasing its timing accuracy allows the generated work-
load to be more representative.

Two requirements are necessary to ensure the RTE's ability to
generate realistic workloads: the RTE must be able to accurately emulate
remote devices, and the workload presented by the RTE must be repeatable
[Watkins 77]. These requirements are based on the primary motivation for
the project: some method must be provided to accurately simulate real
inveractive users.

To be able to accurately emulate remote devices, the RTE must be
capable of three things: it must be able to alter its behavior based on
data it receives from the system under test, it must be able to accurately
control delays between characters, and it must be able to accurately
control delays between a response from the system under test and the next
message from the RTE. These requirements follow directly from the defining
characteristics of interactive workloads mentioned in the last chapter.

The necessity that the RTE produce a repeatable workload is a direct
result of the purposes for which the RTu will be used. Since it will be
used to compare different hardware and software configurations, it must be
capable of generating the same workload time and again., This is not to
say, however, that given the task of generating the same workload, the RTE
will generate identical output. If the behavior of the system under test
differs, of necessity, response of the RTE will differ. What must be
expected is that "each time the RTE presents an activity to the SUT [system

Georgia Institute of Technology Remote Terminal Emulator

)l s

PRI

it st ld .

T

e it i

Page 10 The RTE Project Chapter 2

under test] the observed performance differences are due to the SUT and not
to the RTE" [Watkins 771.

The requirements to ensuic the long-teim effectivensss of +l. RTE 1
are perhaps more obvious, since they apply to most software systems as
E well. These include ease of use, ease of maintenance, and flexibility. It
is clear that implementation of the RTE will have been wasted if use of the
RTE requires as much effort and knowledge as is required to implement a ;
special program to be used once to perform the same actions. 3

The RTE will not be useful if it is not easy to maintain (e. g., it
requires a non-standard environment with its own special operating system
and dozens of control files). Again, it will be pointless to keep the RTE
if it requires more effort to maintain than it does to implement the i
special purpose programs the RTE replaces.

Finally, although the RTE must be easy to use, it must be flexible
enough to perform complex and varied emulation tasks. A priori restrie-
tions must be avoided that prevent the RTE from perfoming such tasks as
,, simulating interactive devices other than user terminals, generating work-
" loads for machines other then those in the FDPS testbed, posing as one or
several terminals on a muiti-dropped communications 1line, passively
monitoring activity on a communications line, or emulating a host system
for testing communications line protocols. The RTE must also be efficient
enough to provide a number cf concurrent sessions. Otherwise, the RTE will
be of little use in monitoring even the existing systems.

e i -

o e —

i el o ML 40l ki1, i,

s,

i ot i e

2.2 Deaign Decisiaons

In considerirg the objectives for the RTE and the hardware on
which it is to be implemented, several alternatives for the design of the
RTE are possible. Some of these alternatives can be immediately eliminated
; because they cannot possibly meet the requirements established for the
- implementation; in other cases, a choice must be made for 1less concrete
reasons. In these cases, the choice has been made in favor of the simplest
scheme, so that if it is found to be inadequate, it can be remedied at the
least expense. The rest of this section describes the major design
decisions and their rationale.

R L e T TR T TR

s —— e —————-.

Georgia Institute of Technology Remote Terminal Emulator

- ¢

R

-
A

Chapter 2 The RTE Project Page 11

The first choice in selecting an implementation plan is the choice
of operating systems. Here there are just three alternatives: the Prime-
supplied single-uscr operating system (Primos II), the Prime-supplied
multi-user operating system (Primos), and no operating system at all.
After eaperience with design of a stand-along program for the Prime svstems
during a course taught in the winter quarter of 1981, it is obvious that
totally abandoning the vendor-supplied operating systoms would be an
extremely expensive and time-consuming move, probably tripling the
magnitude of the project. Therefore the only reasonable alternative is to
select one of the vendor-supplied operating systems.

It is clear that the RTE must be able to support multiple concurrent
interactive sessions, so some concurrency will be required in the RTE. The
multi-user operating system supports multiple concurrent processes and
virtual memory, while the single~user operating system does not. There are
only two possible advantages in using the single-user operating system,
assuming multiple processes are simulated to provide the recessary
concurrency: code can be shared between processes, and process switching
time can be minimized. These advantages are not significant though, since
the multi-user operating system allows reentrant code to be shared between
processes and, more importantly, makes use of the microcoded process
exchange mechanism provided in the Prime systems, providing very fast, if
not the fastest possible, process switching.

Since use of the single-user operating system provides no obvious
benefits and because it would noticably complicate the project by requiring
the implementation of process scheduling and concurrency primitives, use of
the multi-user operating system is probably the best choice.

Choice of an implementation language for the RTE is suprisingly sim-
ple. A%t the time of implementation, only a few languages were available on
the Prime systems: Cobol, Basic, Fortran, Ratfor, and assembly language.
Assembly language might be the logical choice if ease of programming and
maintenance was not considered. However, the assembly language for the
Prime systems is quite complex and there are few people who program in it
effectively, Cobo) and Basic are probably not well suited for this type of
programing; in addition, the Prime implementation of these languages is
very slow. The choice then falls to either Fortran or Ratfor; since Ratfor

Remote Terminal Emulator

Georgia Institute of Technology

el et 1 Ak

ot ki el ettt s

T

Page 12 The RTE Project Chapter 2

is a superset of Fortran and provides many features for writing easy-to-
wndarscand programs, it was the obvious choice,

Another area for choice is the structure of the RTE itsel.. There
are three different structures that can be used for the RTE: the RTE can
directly interpret a human-readable scrip™ during the emulation session,
the RTE can compile a human-readable script into a machine language
program, or the RTE can compile the human-readable script into an easy-to-
interpret intermediate form for execution. The principle difficulty with
the first choice is that it takes a great deal of time to parse a free-form
program. Since the number of simultaneous interactive sessions that can be
run may well be determined by CPU time requirements, it seems foolish to
place the parsing load in the most time-critical area when better alter-
natives are available.

The second approach, compiling a script into machine language,
solves the objection to the first approach by allowing a complex script
language while allowing quick execution. It does, however, present two
other problems. First, it does not allow the sharing of code between
scripts (except between identical szripts), since each script would be a
separate object program. Second, it would significantly complicate the
implementation to directly generate machine code, and generating assembly
language or Fortran would inconvenience users by requiring a great deal of
time for compiling and linking the script programs.

The last approach, campiling scripts into an intermediate form,
minimizes the deficiencies in both of the previous two approaches. It
permits a camplex source language, while permitting efficient
interpretation. It also allows the interpreter code to be shared among the
concurrent processes and is much easier to implement and maintain. It is
this approach that was used.

A difficult area to address is the analysis to be done on the output
from an RTE test session. Little is known about what information will be
required in the analysis of a test session, since many of the projects that
might use the RTE have not been devised. Because of this, it is necessary
to defer the decisions on the exact kinds of analysis that can be per-
formed. Fortunately, there is an approach which allcwws this quite simply.
The RTE time-stamps and records all input and output from interactive ses-

Georgia Institute of Technology Remote Terminal Emulator

Y Y YT hd

T SO WA U PSSP et

ettt i

£
.
b

g T

Chapter 2 The RTE Project Page 13

sions du-ing emulation. Insructions are written in the script to place
various markers in this log along with v session transcription. Then,
after the emu.lation session 1s camplete, these Jogs can b2 aralyzed. Since
events of nterest to the investigator have been tagged by markers in the
log, time intervals can be easily camputed, and other information can be
derived as needed. This approach has the benefits that the analysis code
is not built into the RTE and can thus be changed without danger to the
integrity of the RTE code, and since a complete record of the amulation
session is made, anclyses mav be run and rerun on the same session without
the need of repeating the expensive emulation session.

2.3 Implementation Sketch

The RTE is implemented on the FDPS testbed and runs under the
Primos operating system on Prime 400 and larger 3ystems with at lesst 1
megabyte of main memory. The code is written in a local dialect of Ratfor
[Kernighan 76, Akin 80] which is part of the Georgia Tech Software Tools
Subsystem [Akin 81].
As discussed above, RTE contains three components: the preproces-
sor, the interpreter, and tre analyzer. A diagram of the structure of the
RTE appears in Figure 4.

Georgia Institute of Technology Remote Terminal Emulator

et Dol el 8

ks i

Wl i s <t bt e

T T

At adn Pl

Page 14 The RTE Project Chapter 2
Breprocessor:
| | | | H |
| [P Seript |——] I]
! ! |==|===>! Preprocessor |——-| I ;
| Seript |=lzsle—=>| je=>| Secript | .1
| Source |__l1 l] | Object |l
]] d }
Anferprater: i

! o l]
= P

|
|==|===>| Interpreters |——-| I
R Y Y |===>| Session i

| '
| Secript | — :
| Object |)| -l | Logs Il i
l 1 b1 1]
1 .
: - |
! System {
| Under Test |
I I
1 | :
|
Analyzer: 3
1 b b |
I | |—>| Session | | Time | g
| | {==|==>| Analyzer |—=>| Intervals |
| Session |w=|z=l=—>| | l |
| Logs |l | - 1 A
] |

Figure 4 —- Structure of the RTE Implementation

Table 1 contains a brief description of how the RTE operates:

Table 1 --- Operation of the RTE

(1) The user first determines the scripts to be used. In addition to
the text of tne messages to be sent to the system under test, the
scripts also contain information such as actions required for
initialization, conditional branches based on response- from the
gsystem under test, and the method of computing character and mes~
sage delay times.

(2) The user codes the scripts in the script source language and
enters them with the text editor.

b "

Georgia Institute of Technology Remote Terminal Emulator

IR TR a5 g

e

Chapter 2 The RTE Project Page 15

(3) The scripts are translated by the script preprocessor into the
binary script object language.

(4) The user, with the assistance of the Software Tools Subsystem,
creates a command procedure to initiate all instances of the
interpreter. The user also specifies the script object program
for each session, the method of access to the system under test,
and the file to be used for logging session activity.

(5) The user initiates the command procedure. The interpreter
processes are spawned, perform any necessary initialization and
then wait for the signal to begin the emulation session.

(6) The user signals the interpreter processes to begin the test por-
tion of their scripts.

(7) After the interpreter processes terminate, the user may then run
the analysis programs using the session log files to obtain the
desired measurments.

The implementation of the three components of the RTE are discussed
below. Exact specifications and operating instructions for these com-
ponents are described in the User's Manual, included as an appendix. Also
described in detail in the User's Manual are the script source language,
the script object language, the session log file format, and the analyzer
output format.

2.3.1 Ihe Script Preprocessor

The script preprocessor is responsible for converting user-
written script source language programs into script object language
programs for interpretation. The script source language is a simple line-
independent language in which each statement begins with a keyword. Pars-
ing is done with a simple recursive descent parser generated using the
'stacc! parser generator [Akin 81]. The preprocessor makes a single pass
over the input language while generating two output streams. The first
output stream contains directives for the allocation of all variables and
constant data items. The second stream contains the code generated for
each procedural statement. After the input has been completely processed,
the preprocessor makes another pass over the procedure stream to backpatch
the forward-chained branch addresses. Then the two streams are
concatenated and copied into the script object file,

Georgia Institute of Technology Remote Terminal Fmulator

JE

N e A ekt

Pare 16 The RTE ?rojectu Chapter 2

2.3.2 Ihe Scrint Intacncatar

The interpreter takes a single scr'pt object program and
] interprets it -0 emulate a single interactive session., Multiple sessions
3 are emulated by running nultiple coples of the interpreter simultaneously.
E When the interpreter is first executed, it reads the date ellocetion
int'ormation from the object program and uses this information to initialize
its data areas. It then begins to interpret the procedural coae. In most
instances, it performs any necessary initializations both locally and on
the system under test (e. g., logging in, copy program and data files into
a work area, etc.) By convention, the script directs the interpreter to
wait for a signal from the user before beginning the test session code.
4 ; When it receives the signal to continue (usually all sessions are signalled
i simul taneously), it begins to execute the test portion of the script i
: i program until that program directs it to terminate. Meanwhile, every input i
; _ and output to the interpreter is time-stamped and)ogged for the analyzer. %
P If the script program detects an error, or the interpreter receives no
: response from the system under test for a specif'ied interval, it displays a
message indicating the problem.

Currently, the interpreter has three ways of accessing a remote
system. The first is through direct connection of an asynchronous 1line.
This allows the interpreter to conmmunicate with any device that supports an
asynchronous RS-232-C interface. The second option allows the interpreter
to obtain a virtual circuit to the system under test and initiate a
terminal session through the remote login server of Primenet, thus allowing
eagsy access to any Prime CPU connected via a ring network or other com-
munications link. The third option causes the interpreter to read and §
write to its connected terminal, providing a way of exercising the ;
interpreter and testing scripts without connecting to another camputer
(i.e. the user pretends that he is the remote system and types its inten- 1
; ; ded responses). The interpreter is written so that all session establish- :
ment and input-output 1is performed in a single module so that as other
access methods are needed, they can be easily added without concern for the
structure of the rest of the interpreter.

|
4
?

e it at sl

W

e e i) il -

Georgia Institute of Technology Remote Terminal Emulator

P T T T e

Chapter 2 The RTE Project Page 17

2.3.3 Inha Jeazion Analyzer

There are two kinds of analysis that can be performed on the
output from an emulation session: session trace analysis arnd time interval
analysis. The session trace analysis simply displays all input and output
during the session in a readable form, along with the time intervals
between each event. This type of analysis lends itself particularly well
to verifying the actions perfc-med by each script.

Time interval analysis displays the elapsed time between any two
events occuring during emulation., Events are marked by ™log" statements
Flaced in the seript by the user. For instance, to measure the time
required to compile, 1link, and execute a Fortran program, the user would
place a "log" statement for an event (perhaps event 1) Jjust before the
statement sending the "campile™ command, and would place another "log"
statement (perhaps event 2) just after the statement receiving the message
indicating that execution is complete. The unalysis program is then told
to display the elapsed time between consecutive occurrences of event 1 and
event 2,

All of the time interval analyses produce nothing more than a list
of time intervals between the events that they measure, For instance, the
measurement of the interval between completion of an RTE output and the
receipt of the reponse message would result in the display of many time
intervals (one for each output/response pair thaat occured), while the
measurement of session time would result in the display of a single inter-
val, These lists of raw time intervals may be easily concatenated and pas-
sed to any of several statistical packages, such as 'stats' [Akin 81] or
SPsS [ref], to perform the desired statistical calculations.

Georgia Institute of Technology Remote Terminal Emulator

Lt
PN

e oa I
S S SO WU,

Page 18 Conclusion Chapter 3

CHAPTER 3
Conclusion

3.1 Evaluatiaon
| The requirements set forth for the RTE in Chapter II are sum-
marized in Table 2:

Table 2 - Requirements for an RTE

I. The RTE must be able to generate a useful workload
A. accurately emulate remote devices
1. alter its behavior based on data received
2. accurately control delays between characters
3. accurately control delays between messages
B. present a statistically repeatable workload

II. The RTE must be useful in the long temm
A, easy to use
B. easy to maintain
C. flexible

The ensuing paragraphs discuss how well the RTE implementation meets each
these requirements.

In choosing among the requirements, it is most impertant that the
RTE be able to generate useful workloads. After examining the capabilities
of the RTE implementation, it is clear that the RTE can accurately emulate
remote devices: it can choose its execution path based on output from the
system under test, it can be instructed to send a character after waiting
an arbitrary time, and it can be instructed to wait an arbitrary period of
time after recognizing a message from the system under test before traris-
mitting the next input.

The only point of question .s whether the implementation can
accurately time the waiting periods and send the output characters at the
time specified by the user. Since the timer resolution of the Prime CPU is
3.030 milliseconds, it is c¢lear that one cannot expect the RTE to exceed
this accuracy when devending on the system timer. In addition, character
buffering and process scheduling mechanisms in the operating system have an
incalculable, although substantial, effect on the accuracy of the timing.

Georgla Institute of Technology Remote Terminal Emulator

it Lo [t i

ot s LA s s,

i« e ne i Be it

PP

e msttho st tall a2 A el T

i, | ST

[
i

T A T S T G
e e r——

Chapter 3 Conclusion Page 19

When an interpreter process is awakened by the t'mer, several events
must occur before it can send a character to the system under test. These
events are outlined in table 3 below.

Table 3 —— Character Transmission Events

Interpreter process is notified. Timer resolution may introduce
a delay error of up to 3 ms. in the awakening of a process
scheduled to send a character.

Interpreter process is dispatched. A delay of several seconds
may be introduced, depending on the operating system
scheduler and CPU load.

The character is placed in the output buffer. Before reaching
this point, the interpreter may be delayed even further by
an unanticipated, asynchronous interrupt or it may be queued
for having used up its current time slice.

The character is sent. Several milliseconds (unpredictable and
uncontrollable) may elapse before the asynchronous 1line
control hardware finds and sends the character.

Each of these time-~dependent events delays the transmission of each charac-
ter contributing to the timing error an increment ranging from a few mil-
liseconds to several seconds.

The RTE attempts to avoid the cumulative error problem by sending
characters at times specified relative to the beginning of the message,
rather than specified as an interval between characters. This approach
reduces the timing error between characters, but does not affect the timing
error between messages.

To address the question as to whether the RTE can generate
repeatable workloads, one must recoghize that, although the behavior of
each script should be deterministic, the overall result of a test session
is non-deterministic. The probability distributions used for determining
inter-character delays in the scripts are calculated by the script
preprocessor and the exact values applicable to each specific delay are
entered into the script object program by the preprocessor. Then the
interpretation (i. e., execution) of a script should be completely

deterministic. However, both the system under test and the RTE host system
behave non-deterministicly during the test session.

Georgia Institute of Technology Remote Terminal Bmulator

bl

[P SR P 0t LY JE SR T WO Y)

Page 20 Conclusion Chapter 3

One cannot (and should not) control the non-deterministic behavior
of the system under test. As a consequence, it introduces a degree of ran-
domness into the test results. The system under test may respond faster or
slower to a given message and cause the corresponding interpreter process
to execute faster or slower than its siblings.

The RTE host system, also a multiprogramming system, introduces
another degree of randomness. As outlined in Table 3, there are several
non-deterministic delays introduced on the timing of the output of eacn
character., Although the variance of some of these delays can be controlled
by manipulation of the operating system configuration parameters, most can-
not be controlled without modification to the operating system algorithms.
This is the penalty paid for the convenience of using the multi-user
operating system in the RTE host.

To determine whether the RTE can generate repeatable workloads, one
must answer the question about the accuracy of the timing. As discussed
above, the script preprocessor calculates all probability distributions, so
the script object program is deterministic. Since the interpreter can use
the same script object program many times, only timing considerations are
in doubt.

There is a significant difficulty in determining the impact of the
timing inaccuracies since the only available measurement tool is another
Prime CPU running the same operating system. Without the use of special
hardware or software, the timing accuracy of the RTE can only be roughly
estimated. Measurements made by executing a single script and recording
the time each character was received by another system indicate that the
average timing delay error for each character was less than 23 milliseconds
per character with a standard deviation of 28, However, when the number of
simultaneous sessions were increased to 20, the average delay error was
about 100 milliseconds per character with a standard deviation of 130 when
measured over a 5 minute period.

Because the behavior of the system under test is non-deterministic,
the result of a single test session is just a sample of a random variable.
Regardless of the behavior of the RTE, the measurements are neither exact
nor perfectly repeatable, except in the stochastic sense. Because of this,
much of the inaccuracy and non-deterministic behavior of the RTE can be

Georgia Institute of Technology Remote Terminal Emulator

e i

e AR A el M i

it s el i

Chapter 3 Conclusion Page 21

ignored when emulating terminal users allowing the results to be used with
a reasonable degree of confidence,

However, these measurements and arguments do not rigorously verify
the timing accuracy of the RTE. In addition, changes that further affect
timing accuracy may occur with revisions to the operating system or hard-
ware, For any application that depends greatly on the accuracy of timing,
the user should verify the timing accuracy using the necessary special
purpose hardware.

In evaluating the RTE implementation with respect to the
requirements for long-term effectiveness, it is very difficult to make a
quantitative judgement. Since perfection in meeting these requirements 1is
probably not attainable, it is more useful to view them as design goals and
examine the length to which these goals were persued in the RTE
implementation.

Severnl features of the RTE should make it easier to use than com-
parable systems, First, the script preprocessor provides several camon
probability density functions for specifying character delays. Although
some users may wish to specify the delay for each character, it is probably
sufficient for most users to supply the parameters of a probability density
function and allow the preprocessor to compute the delays.

Ease of use was also a principal considerations in the design of the
script source language. The language allows column and line independent
input and accepts a simple, English-like syntax with each statement begin-
ning with a keywcrd. Source file inclusion and macro facilities are also
present to minimize the effort to create the number of slightly different
scripts necessary for a complex emulation session.

The fact that scripts are processed before the emulation session is
begun produces another benefit: Any syntatic errors made in the script are
diagnosed and can be corrected before the emulation session begins. This
is in contrast to not encountering a syntax error until the interpreter
processes the statement, perhaps not until near the end of a long emulation
session.

Another of the features that make the RTE easy to use (at least for
simple emulation sessions) is the access to the remote login server in
Primenet. A user may specify that the RTE make virtual connections to the

Georgia Institute of Technology Remote Terminal Emulator

saevias —o_aiati s o ey

Page 22 Conclusion Chapter 3

system under test through Primenet*, rather than require hard wire connec-
tions from asynchronous port to asynchronous port. Use of the Primenet
remote login server placen a Jifferent overhead on the system under test
and so may disturb careful measurements. However, the disturbance is
usually limited to less th Jercent of the CPU capacity, so this fom
of connection provides a very convenient vehicle for gross performance
measurements.

To be generally useful as a performance measurement tool in the FDPS
testbed, the RTE must not be tied into making measurements of particular
hardware and software configurations. It should be flexible enough to be
able to emulate terminals attached not only to systems already part of the
FDPS testbed, but to other systems, both present and future. The RTE was
designed to avoid dependencies on the system to be tested and to allow easy
repair of dependencies that are discovered. For instance, although the
interpreter expects ASCII character input, the input and output routines
are isolated and extensible so that new hardware or software interfaces can
be accomodated with little difficulty. Similarly, the session establish-
ment procedures are isolated so that new session protocols can be added.

The KTE avoids dependence on particular system prampting conventions
by supporting generalized text patterns and not insisting on fixed order of
inputs and outputs. The pattern matching capability, also borrowed from
[Kernighan 76], allows the matching of arbitrary prompts by simply writing
a regular expression. Although these particular routines are character
oriented, a new set of routines may be easily substituted. Since the
scripts allow an arbitrary flow of control, it is not necessary that the
system under test prompt for each input, or even give the same prompt. The
script can be programmed to recognize particular proaapts from the system
under test and choose its response accordingly.

Finally, ease of maintenance is a minimal requirement of any
software system. In addition to adherance to good programming techniques,
such as those suggested in [Kernighan 761, several considerations have been
given to enhancing the maintainability and extensibility of the RTE. For
instance, functions such as the statistical analysis of the time intervals
produced by the analysis programs is left to existing packages, such as
SPSS and ‘'stats'. Many of the other functions, such as setting up an

Georgia Institute of Technology Remote Terminal Emulator

R S s e

Y ——

e

Chapter 3 Conclusion Page 23

emulation session, have been left under the domain of the Software Tools
Subsystem [Akin 81]. These systems are specialized to handle these
particular functions; thus the RTE can consist of significantly less stand-
alone code.

To further reduce the need for maintenance, the RYTE implementation
does not depend on local modifications to the operating system. It uses
only documented, fully vendor-supported features. This allows the RTE to
ve used under the standard operating system releases; thus it is not neces-
sary that a separate, specially modified operating system be maintained,

In the case that the existing script language is not powerful or
fast enough to support an application, new capabilities are easily added
with new statements to the script source language and new operators to the
script object language. Instructions on how to accomplish this are part of
the User's Guide that appears in the appendix.

Several utilities for displaying the script object language and the
interpreter session 1logs are available for debugging both scripts and the
RTE itself. These utilities understand these data structures and can print
them in an easily readable form. Instructions for their use are also
includea in the User's Guide in the appendix.

3.2 Becommendations

There are a numbzr of areas left to be addressed in the area of
performance measurement tools for the FDPS testbed. Most important is
research into how to effectively use the RTE. This thesis makes no attempt
to suggest the content of scripts or the methods of analyzing test session
results. These areas must be investigated by the user so that meaningful
results are actually obtained by using the RTE,

Along the lines of more tractable projects, there are several areas
in which the RTE can be improved. First, even though the script language
is easy to use, it still requires a fair amount of work to create a script
-- at least the same amocunt required to write a program of comparable com-
plexity. A great help would be a program that spies on real users and
generates scripts that perform exactly the same activities. At least then,
a worklcad couid be justified as "real", even if there is insufficlent
research to justify it as "representative",

Georgia Institute of Technology Remote Terminal Emulator

Page 24 Conclusion Chapter 3 1

i Wi,

Several parts of the RTE can also be improved. The interpreter must
recognize that a significant time has passed so that it can report to the
user that it has received no response. Currently, the interpreter must
poll its input so that it is not blocked forever waiting on a character. A
recent addition to the operating system allows a process to be signaled
after a specified period of time, regardless of whether it is blocked wait-
- ing for input. Use of this feature would reduce the time necessary for
: busy waiting and perhaps allow more sessions to be run concurrently without
] suffering inaccuracy in timing.

The Software Tools pattern matching routines used for identifying
responses from the system under test have two problems that should be
approached: they are not particularly fast when matching patterns with
] closures, and they are inherently line oriented. Replacing them by a more T
E { sophisticated algorithm such as the DFA pattern matching algorithm :
described in [Aho T77] could significantly reduce processing requirements

; for complex patterns and remove any bias towards line separators.

Lo il "

Georglia Institute of Technology Remote Terminal Emulator

Page 25

ACKNOWLEDGEMENTS

I wish to thank my advisor, Dr. Philip H. Enslow, Jr., and the members of
my comnittee, Drs. Richard J. LeBlanc and Nancy D. Griffeth, for their

guidance and encouragement. I am especially grateful to Jeannette Myers
: for her gracious assistance in writing the programs and revising the 1
; thesis.
E
L]
»]
- |
b
|
: 3
?
§
!
i
1
1

Georgia Institute of Technology Remote Terminal Emulator

- Page 26

Abrams 76

Abrams T8

Aho T7

Akin 81

|
|
!

Akin 80

DeMeis 69

Ferrari 70

Ferrari 72

Ferrari 78
Freeman 75

Karush 69

Kernighan 76

BIBLIOGRAPHY

Abrams, Marshall D. and Watkins, Shirley W., Summary of
Eindins on Alternatives io BRemote Ierminal Emulation for
Imposition of JIelepracessing Morkloads and JIntegrify
Confirmation Aspects of Emulating Ieleprocessing Morkloads,
General Services Administration, CS T7-4, November 1976.

Abrars, Marshall D., "Guidelines for the Measurement of
Interactive Computer Service Response Time and Turnaround
Time," Federal Information Processing Standards Publication
87, National Technical Information Service, August 1978.

Aho, Alfred V. and Ullman, Jeffrey D., Pringiples of Compiler
Design, Addison Wesley, 1977.

Akin, T. Allen, Flinn, Perry B., and Forsyth, Daniel H.,

Georgia Tech Software Tools Subsvstem Beference Manual, School
of information and Computer Science, Georgia Institute of

Technolgy, GIT-ICS-80/03, 1980.

Akin, T. Allen, Flinn, Perry B., and Forsyth, Daniel H.,
Georgia Tech Software Togls Subsystem Reference Manual, School

of Information and Computer Science, Georgia Institute of
Technology, 1981.

DeMeis, W. M., Weizer, N., "Measurement and Analysis of a
Demand Paging Time-Sharing System," Broceedings of the 24th
ACM National Conference, 1969, pp. 201-216.

Ferrari, Domenico, "Architecture and Instrumentation in a
Modular Interactive System," Camputer, vol. 13, no., 8, August
1970, pp. 495-500.

Ferrari, Domenico, "Workload Characterization and Selection in
Computer Performance Measurement", Campuier, July/August 1972,
pp. 18-24.

Ferrari, Domenico, Computer Systems Performance Evaluation,
Prentice-Hall, 1978.

Freeman, Peter, Soffuware Svstems Principles, Science Research
Associates, 1975.

Karush, Arnold D., Two Approaches for Measuring the Per-
formance of Time-Sharing Systems," Proceedings 4ACM = 3IGOPS
2nd Symposium on Qperating Systems £Principles, Princeton
University, October 1969, pp. 159-166.

Kernighan, Brian W. and Plauger, P. J., Software Igols,
Addison Wesley, 1976.

Lucas 71 Lucas, Henry C., "Performance Evaluation and Monitoring",
Surveys, vol. 3, no. 3, 197%, pp. 79-91.
Nemeth 71 Nemeth, Alan G. and Rovner, Paul D., "User Program Measurement
l in a Time-Shared Environment," Communications of the ACM, Vol.
i
Georgia Institute of Technology Remote Terminal Emulator

N

e . gk -_— -

E |
:

!
1
t
t
!

. ——— —————— .

i e o e

14, No. 10, October 1971, pp. 661-A66.

Nie 75 Nie, Norman H., et al., Statistical Package for ihe Social
Sciences, McGraw-Hill, 2nd ed., 1975.

Rodriguez T7 Rodriguez, Humberto, Jr., Measucring lser Characteristics qn
the Multics , Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, MIT/LCS/TM-89, May 1977.

Rodriguez-Rosell 72 Rodriguez-Rosell, Juan and Dupuy, Jean-Pierre, "The
Evaluation of a Time-Sharing Page Demand System," AEIPS
Proceedings of the SICC, 1972, pp. 759-T65.

Salzer 70 Salzer, Jerome H. and Gintell, John W., nThe Instrumentation
of Multics," Communications of Lhe ACM, Vol. 13, No. 8, August
1970, pp. 495-500.

Scherr 66 Scherr, Allan S., "Time-Sharing Measurement," Datamation, Vol.
12, No. 4, April 1966, pp. 559-569.

Schwerm 72 Schwemm, Richard E., "Experience Gained in the Development and
Use of TSS," AEIPS Proceedings of the SICC, 1972, pp. 559-569.

Stimler 69 Stimler, S., "Some Criteria for Time-Sharing System Per-
formance," Communications of tbe ACM. Vol. 12, No. 1, January
1969, pp. u7-53.

Stone 80 Stone, Harold S. et al. Introduction Lo %gmm:
Amhj.{’.mt.u:g, Science Research’Associates, 2nd ed., 1980.

Svopbodova T6 Svobodova, Liba, Computer Performance Measurement and
Exaluation Methods: Analysis and Aoplications, Flsevier North-
Holland, Inc., 1976.

Watkins 77 Watkins, Shirley W. and Abrems, Marshall D., Suryey of JBemole
Terpinal Buulators, National Bureau of Standards, 500-4, April

19'”.

Georgia Institute of Technology Remote Terminal Emulator

TP UVUEU URPR- SPIF S W = D3¥:

.t Vbl s e e 4w

ol

i b bt ke ke

